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Abstract 

The fact that the formalism of stochastic electrodynamics includes the reaction force, 
makes the calculation of the natural line-breadth straightforward. 

The evaluation of the relativistic correction to energy levels is greatly simplified in 
stochastic electrodynamics and brings out the concept of the propagation of the Coulomb 
field with the velocity of electromagnetic waves. 

1. Introduction 

Using strictly classical arguments and the concept of  the universal 
zero-point field, an equation similar to Schr6dinger's equation was derived 
(Surdin, 1971a). 

The zero-point field is a random electromagnetic field at the absolute 
zero of  temperature whose spectral density, for a one-dimensional case, is 

g t o  3 

~(o~) = ~c3  (l.O 

where Kis  a constant, having the dimension of  action. 
The above-mentioned derivation pertains to a linear, non-relativistic, 

motion of  a particle of  mass m, charge e, acted upon by an external field 
of  force F(x, t) and the universal zero-point field. 

The corresponding equation of  motion, a generalised Langevin equation, 
is 

+ # ~ -  ~ r ( x ,  t) = A(t) (1.2) 
/7l 

fl is the damping coefficient and A(t) represents the zero-point field, con- 
sidered to be a Markoff process. 
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The wave function W, representing the motion described by equation 
(1.2), satisfies the following modified SchrSdinger equation 

a~ iK 0 2 7 t i Sm 2 
Ot 2m " Ox 2 ~ [ E -  V(x,t)] ~ = - f l ~ - - K - T  lve(x,t) (1.3) 

V(x, t) is the potential function of the external field of force F(x, t) 

0 V(x ,  t ) 

0x 
- -  = F ( x ,  t )  (1.4) 

Eis the energy &the  system, S is the average spectral density of the energy 
absorbed by the particle from the zero-point field, 

~t / f  t+At '~2\ 
S =  lim A(t)dt 

dlr~O 

Iv(x, t) is a function such that 

a s Iv(x, t) 
a x  ~ = ~ ' ( x , t )  

(1.5) 

(1.6) 

Apart from the terms of the second member, equation (I.3) is 
Schr'6dinger's equation, provided one has K =  h. According to stochastic 
electrodynamics K is a 'classical' quantity, the numerical value of which 
was evaluated independently of quantum mechanics. The calculated value 
was found to be, within a fraction of 1 ~ ,  the same as that of h (Surdin, 
1971b). 

The equation of motion of a linear, non-relativistic, harmonic oscillator, 
in which the damping force 2e2~/3c 3 is accounted for, may be reduced to 
equation (1.2), then/~ = (2e2/3mc 3) COo 2 = zcoo2; wo is the resonant frequency 
of the oscillator. 

The application of equation (1.3) in this case has shown that the energy 
represented by the terms of the second member is small when compared to 
the ground state average energy and, to the first approximation, the right- 
hand side terms cancel each other (Surdin, 1971a). 

It is the purpose of this paper to show that the second member, when 
fully considered and not simply in its approximate form, represents the 
natural line-breadth. 

2. The Natural Line-Breadth of  the Grotmd State of  the Hydrogen Atom 

For the study of the natural line-breadth, the pertinent wave function 
W(x) is time-independent; equation (1.3) becomes then 

d 2 It I 2 m  . 2 m  .-2Sm 3 
d--~ + ~-i [ E -  V(x)] ~' = - t - ~ p ' P  - t - ~ -  Iv(x) (2.1) 
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In fact, equation (2.1) is an integro-differential equation, since 

= f dx f at +s(x) (2.2) 

wheref(x) is a function o fx  depending on the initial conditions. 
Equation (2.1) may be transformed into an integral equation, the formal 

sclution ofwhich is known. Such an approach is presented in the Appendix. 
However, for the calculation of the line-breadth of the ground state of 

the hydrogen atom, a much simpler procedure will be followed. 
It is well known that the necessary information about the ground state 

of  the hydrogen atom is obtained for a Coulomb potential V(r)=-e2/r 
and for a centrally symmetrical wave function W(r). The SchrOdinger 
equation in this case is 

d 2 d ]  2ml" e~l 
(2.3) 

The solution of equation (2.3) is 

K 2 
= e -'/'°, ro = 

g 2 

and Eo= 2mro 2 (2.4) 

The evaluation of  the corresponding fl and S, at the present state of our 
knowledge, is possible if one considers the equation of  motion of the 
equivalent linear harmonic oscillator. The equation 

e 2 
+ Xo too 2 t + rnro---- 5 r = A(t) (2.5) 

where c%2= e2/mro 3 and too = K/taro 2, corresponds to the case in hand, 
provided one bears in mind that the average ground state energy is negative. 

The related modified Schr~Sdinger equation is 

2m[ ~]  -t--~fltP K3 I~(r) (2.6) V 2 ~ + - ~  (Eo+AE)+ ~ =  .2m i2Sm s 

where the expressions (2.4) conserve their validity. To account for the terms 
on the right-hand side of equation (2.6) the energy Eo was replaced by 
£o+ AE. 

If  one chooses the proper initial conditions for l~,(r), equation (2.6) 
yields 

iSm2 2 
zIE = -iKfl - T ro (2.7) 

As 
2 ~  2e 2 K 

P = 3-~zc ~ • o~d, S = ~ ~od 
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and using the relations (2.4), equation (2.7) becomes 

AE= - i~ Kc 1E°[ = -iaa-~3 [Eol (2.8) 

AE is the line-breadth of the ground state of the hydrogen atom and ~t is 
the fine-structure constant. 

The comparison ofthe natural line-breadth with the relativistic correction 
to energy levels appeared to present some interest. 

3. The Relativistic Correction to Energy LeL, els 

In quantum mechanics the relativistic correction to the energy levels 
of the hydrogen atom, due to the relativistic variation of the mass of the 
electron with velocity, is obtained by the application of the perturbation 

M 

Figure 1. 

theory (Bethe & Salpeter, 1957). Attention was drawn by Barut & Baiquni 
0969) and Lieber (1972) to the delicate points in the application to this 
case of the perturbation theory. 

In stochastic electrodynamics the approach is somewhat simpler. The 
electron, while in motion on its orbit around the proton, emits electro- 
magnetic waves.t These waves probe the space surrounding the electron, 

t The loss of energy, thus experienced, is exactly compensated by the gain of energy 
from the zero-point field (Surdin, 1973), 
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locate the proton, and inform the electron what the distance electron-proton 
is. This is equivalent of  considering that the Coulomb potential propagates 
with the velocity of electromagnetic waves. 

Consider the ground state of the hydrogen a tomt  whereby, for the sake 
o f  simplicity, the electron and the proton describe circular orbits around 
their centre, of  mass. The situation is depicted in Fig. I. 

Let r I and r2 be the radii of  the circles described around the centre of  
mass O, respectively, by the electron of  mass m and the proton of mass M. 
Then 

t oM rom (3.1) 
, r 2 - -  r o = r t + r 2 and rt = M + m M + m 

The velocities v I of  the electron and v2 of  the proton on their orbits are 
related by 

VZ/V l = r z / r  I = m/M (3.2) 

While in motion on its orbit the electron emits an electromagnetic 
wave. The wave emitted at the time to, when the electron is at too, travels 
with velocity c, reaches M, then travels back and reaches the electron at 
m z. Thus the distance r = rooM = mz M, travelled by the electromagnetic 
wave between the electron and the proton, is slightly shorter than the 
distance to. Hence, the energy of  the ground state E, will be slightly larger, 
in absolute value, than Eo; say 

E, = Eo + AE, (3.3) 

One may evaluate AE, in the following way: The distance r is approxi- 
mated by 

r = MM2 + M2/7'12 ----- [(2rz) z - Ml M22] 1/2 + rt - r2 (3.4) 

The time of  propagation of  the electromagnetic wave between mo and M 
is t = ro/c, then 

Mx Mz = t~2 r° = mrovl 
c M c  

Hence 

2taro [l l[M+m 2vl ]l/2 M - m  
r = M -t- ra t 4 ~ ~ J - j  J -t" ~ - ~  r o (3.5) 

Neglecting terms of  higher order in vtZ/e 2, one obtains from equation 
(3.5) [ -l r e (M+ m ) ~ l  

r = ro 1 - 4 M 2 c2 j (3.6) 

t The final results are easily extended to cover excited energy states. 
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The energy of the ground state before the application of the relativistic 
correction, Eo = -e212ro, becomes after the correction is applied 

Hence 

E, = Eo + dE, = - : / 2 r  (3.7) 

I m(M + m) ox z 
zlE,= ~ - ~  ~-lEo[ (3.8) 

Since viZ/c 2 = ~t 2, one has, finally 

lm(M+m) 2 ~ ,  
(3.9) 

But for the factor (M + m)/M, this result is the same as the one obtained in 
quantum mechanics. 

Comparison of AE, with the natural line-breadth AE, shows that the 
latter is, approximately, two orders of magnitude larger than the relativistic 
correction. It should be borne in mind that the relativistic correction cor- 
responds to the shifting of the uncorrected curve by AE,. 

4. Remarks 

It is not surprising that the modified Schr6dinger equation (1.3) or 
(2.1) allows one to calculate easily the natural line-breadth. This is due 
simply to the fact that the reaction force is included in this formalism. 

In quantum mechanics, i.e. in the SchrSdinger equation, the natural 
line-breadth is not included. To obtain the natural line-breadth one has to 
apply the perturbation theoryt (Heitler, 1954).- 

In stochastic electrodynamics the relativistic correction to energy 
levels is obtained in a simple manner which introduces the notion of the 
propagation of Coulomb's potential with the velocity of electromagnetic 
waves. It is interesting to note here that a similar procedure was used to 
modify Newton's gravitational potential, in an attempt to account for the 
advance of the perihelio0 of Mercury and the bending of light rays by 
massive objects (Surdin, 1962). 

Generalising, one may set forth the fol!owing principle: Two separate 
systems interact according to the information transferred from one system 
to the other. 

This principle is included in stochastic electrodynamics, since the 
information is transferred by the all-pervading electromagnetic waves. 
For stationary motions the zero-point field compensates, on the average, 
t h e  energy loss due to emission of electromagnetic waves by the moving 
system. 

'f' Moreover, one has to assume that the probability of finding the atom in the excited 
state decreases exponentially with time. 
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In quantum mechanics, for instance in the case of the ground state of 
the hydrogen atom, the electron during its motion does not emit electro- 
magnetic waves. No information about the proton is transferred to the 
electron, unless one considers the fluctuation of the vacuum, which is 
equivalent to the concept of the zero-point field. 

Appendix 
Equation (2.1) may be rewritten as 

2m 2m y"(x) = -~-~ [E+  i~K]y(x) +-g~ V(x)y(x) - 
~ x  

,2Sm3 f f Kz y(t) dxdt +Ax + B 
O 0  

(A.1) 

where W was replaced by y, the terms Ax + B represent the initial condi- 
tions o n  I ~ , ( x ) .  

After reduction &the  double integral, on the right-hand side, to a simple 
integral, viz: 

f ' f y ( t ) d x d t = ; ( x - t ) y ( t ) d t  (A.2) 
O O  0 

equation (A. 1) becomes 
x 

y'(x) ay(x) + b V(x)y(x) - c ~ (x - t)y(t)dt + Ax + B (A.3) 
0 

where 
2m 2m 2iSm 3 

a = -  ~-3 (E + iflK), b = ~-3 and c = K--- T-  

Equation (A.3) is then integrated twice, at each step the reduction of the 
double integral into a simple integral is performed, finally one has 

x -x _ t) V(t)y(t)dt ) y(x) = a f (x - t)y(t)dt + b [ (x 
o x o ( A . 4 )  

+~ ( x -  t)3y(t)dt +g(x) 

where 
A a B ~ g(x)=gX +gx-+Cx+ D 

A, B, C and D are constants, independent ofx.  
Let 

e 
N ( x ,  t )  = a (x  - t )  + bCx - t )  V(O - g ( x  - 0 3 (A.5) 
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then equation (A.4) becomes 
x 

y(x) = g(x) + f N(x, t)y(t)dt 0 (A,6) 

(A.6) is Volterra's integral of the second kind. 
If, however, the modified Schr~Sdinger equation is of the form (2.6), it 

may be rewritten as 

2 2m 2m i2Sm_____ a 
V y(r) = - - ~  [E+ i,gK].y(r) + - ~  V(r)y(r) - KZ f j !  y(t)drdt (A.7) 

a a 

the lower limits of integration are relative to the initial conditions. After 
reduction of the double integral into a simple integral, and conserving the 
notations of (A.3), one obtains 

If 

V'y(r) - ay(r) = b V(r)y(r) - c f (r - t).)'(r) dt (A.8) 
G 

To solve equation (A.8) one may follow the procedure indicated by 
Arfken (1970), viz: let 

where 

| fy(r)e-lk,rdr ) *(k) = 

l f , (k )  etk"dk y(r) = ( 2 ~  

(A.9) 

P = k  K (A.10) 

Rewrite equation (A.8) as 

f(v" - a) y(r) e -tk'' dr = b f V(r) y(r) e -tL' dr 

r 

- c f f  ( r - 0 y ( t ) e - " ' t d r  dt (A.ll) 
a 

then, combining (A.9) and (A.11), one obtains 

b V(r) f O(k') e-"~-k').rdr dk'  - (2n) ~/z (k 2 + a) (~(k) = ~ f 

T 

- c  f (, - 0 d~ at f ,,(k')e-"'-'" ' dk' 
II 

(A.12) 



then 

Let 
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b 
G(k, k') = ~ f V(r) e - ' tk-k ' ' ' '  dr 

It 
, e 

F(k ,k  ) =.(-~)3 ~, dr f ( r -  t )e-"k-k'"t  dt 

- ( k  z + a) *(k)  = f [G(k, k') - F(k,  k')] ~(k ' )dk '  

Equation (A.14) is Volterra 's integral equation o f  the first kind. 
Once ~(k)  is determined, the second equation (A.9) gives y(r) .  

(A.13 

(A. 14) 
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